A benchmark of a viscoelastic(LUBBY2) model

The LUBBY2 model is based on the generalised Burgers model and is described by the following evolution equation [1]:

$$\boldsymbol{\sigma} = K_{\mathrm{M}} e \mathbf{I} + 2G_{\mathrm{M}} \left[\boldsymbol{\epsilon}^{\mathrm{D}} - \boldsymbol{\epsilon}_{\mathrm{M}}^{\mathrm{D}} - \boldsymbol{\epsilon}_{\mathrm{K}}^{\mathrm{D}} \right]$$
$$\dot{\boldsymbol{\epsilon}}_{\mathrm{K}}^{\mathrm{D}} = \frac{1}{2\eta_{\mathrm{K}}} \left(\boldsymbol{\sigma}^{\mathrm{D}} - 2G_{\mathrm{K}} \boldsymbol{\epsilon}_{\mathrm{K}}^{\mathrm{D}} \right)$$
$$(1)$$
$$\dot{\boldsymbol{\epsilon}}_{\mathrm{M}}^{\mathrm{D}} = \frac{1}{2\eta_{\mathrm{M}}} \boldsymbol{\sigma}^{\mathrm{D}}$$

where σ^{D} is the deviatoric stress, ϵ^{D} is the deviatoric strain, and e is the volume strain. The viscosities and the Kelvin shear modulus of the Lubby2 formulation are functions of the current stress state

$$\eta_{\rm M} = \eta_{\rm M0} e^{m_1 \sigma_{\rm eff}}$$

$$\eta_{\rm K} = \eta_{\rm K0} e^{m_2 \sigma_{\rm eff}}$$

$$G_{\rm K} = G_{\rm K0} e^{m_{\rm G} \sigma_{\rm eff}}$$
(2)

with

$$\sigma_{eff} = \sqrt{\frac{3}{2}\boldsymbol{\sigma}_{\mathrm{D}}:\boldsymbol{\sigma}_{\mathrm{D}}} \tag{3}$$

where m_a are material parameters characterising the stress dependency.

The rheological model is shown in Fig. 1 consisting of a Maxwell element in series with a Kelvin element.

Figure 1: Rheological analogue of the LUBBY2 model.

The state vector $z = (\boldsymbol{\sigma}^{\text{DT}}, \boldsymbol{\epsilon}^{\text{DT}}_{\text{K}}, \boldsymbol{\epsilon}^{\text{DT}}_{\text{M}})$, which contains unknowns, are solved by using the Newton-Raphson method with the residual vector of

$$\mathbf{r}_{1}^{j} = \boldsymbol{\sigma}^{\mathrm{D}j} - 2\left(\boldsymbol{\epsilon}^{\mathrm{D}j} - \boldsymbol{\epsilon}_{K}^{\mathrm{D}j} - \boldsymbol{\epsilon}_{M}^{\mathrm{D}j}\right) \tag{4}$$

$$\mathbf{r}_{2}^{j} = \frac{\boldsymbol{\epsilon}_{\mathrm{K}}^{\mathrm{D}j} - \boldsymbol{\epsilon}_{\mathrm{K}}^{\mathrm{D}t}}{\Delta t} - \frac{1}{2\eta_{\mathrm{K}}} \left(G_{\mathrm{M}} \boldsymbol{\sigma}^{\mathrm{D}j} - 2G_{\mathrm{K}} \boldsymbol{\epsilon}_{\mathrm{K}}^{\mathrm{D}j} \right)$$
(5)

$$\mathbf{r}_{3}^{j} = \frac{\boldsymbol{\epsilon}_{M}^{\mathrm{D}j} - \boldsymbol{\epsilon}_{M}^{\mathrm{D}t}}{\Delta t} - \frac{G_{\mathrm{M}}}{2\eta_{\mathrm{M}}}\boldsymbol{\sigma}^{\mathrm{D}j}$$
(6)

and the 18 \times 18 Jacobian:

Figure 2: Loading and boundary conditions.

Table 1: Material properties used in the LUBBY2 model

$G_{\rm M0}$ / MPa	$K_{\rm M0}$ / MPa	$\eta_{\rm M0}$ / (MPas)	$G_{\rm K0}$ / MPa	$\eta_{\rm K0}$ / (MPas)	m_1	m_2	$m_{ m G}$
0.8	0.8	0.5	0.8	0.5	-0.3	-0.2	-0.2

$$\frac{\partial \mathbf{r}}{\partial \mathbf{z}} = \begin{pmatrix} J_{11} & J_{12} & J_{13} \\ J_{21} & J_{22} & J_{23} \\ J_{31} & J_{32} & J_{33} \end{pmatrix}$$
(7)

where the components are given as follows:

$$\boldsymbol{J}_{11} = \frac{1}{\Delta t} \boldsymbol{I}, \ \boldsymbol{J}_{12} = \frac{2}{\Delta t} \boldsymbol{I}, \ \boldsymbol{J}_{13} = \frac{2}{\Delta t} \boldsymbol{I}$$
(8)

$$\boldsymbol{J}_{21} = -\frac{G_{\mathrm{M}}}{2\eta_{K}}\boldsymbol{I}, \, \boldsymbol{J}_{22} = \frac{1}{\Delta t}\boldsymbol{I} + \frac{G_{K}}{\eta_{K}}\boldsymbol{I}, \, \boldsymbol{J}_{23} = \boldsymbol{0}$$
(9)

$$\boldsymbol{J}_{31} = -\frac{G_{\mathrm{M}}}{2\eta_{\mathrm{M}}}\boldsymbol{I}, \, \boldsymbol{J}_{32} = \boldsymbol{0}, \, \boldsymbol{J}_{33} = \frac{1}{\Delta t}\boldsymbol{I}$$
(10)

for $\sigma_{\rm eff} > 0$

$$\boldsymbol{J}_{21} = \frac{1}{2\eta_K} \left(G_{\mathrm{M}} \boldsymbol{\sigma}^{\mathrm{D}j} - 2G_{\mathrm{K}} \boldsymbol{\epsilon}_{\mathrm{K}}^j \right) \frac{3}{2} m_2 G_{\mathrm{M}} \frac{\left(\boldsymbol{\sigma}^{\mathrm{D}j}\right)^T}{\sigma_{\mathrm{eff}}} + \frac{3}{2\eta_K} \boldsymbol{\epsilon}_{\mathrm{K}}^j m_{\mathrm{G}} G_{\mathrm{K}} G_{\mathrm{M}} \frac{\left(\boldsymbol{\sigma}^{\mathrm{D}j}\right)^T}{\sigma_{\mathrm{eff}}}$$
(11)

$$\boldsymbol{J}_{31} = \frac{1}{2\eta_M} G_{\rm M} \boldsymbol{\sigma}^{\rm Dj} \frac{3}{2} m_1 G_{\rm M} \frac{(\boldsymbol{\sigma}^{\rm Dj})^T}{\sigma_{\rm eff}}$$
(12)

The mechanical model is a square plate/cube with a positive shear stress of 0.01 MPa applied on the top side/surface, see Fig. 2. Displacements of the left, right side and the top are constrained in vertical direction. The material property set for this benchmark is listed in Table 1.

References

 Thomas Nagel, Uwe Jens Görke, Kevin M. Moerman, and Olaf Kolditz. On advantages of the Kelvin mapping in finite element implementations of deformation processes. *Environmental Earth Sciences*, 75(11), 2016.

Figure 3: Variation of the shear strain with time (a) and the deviation between analytical solution and numerical simulations (b).