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1 Unsaturated Component Transport Process

Used literature: [I] [3] [4] [2] [5] [7] [8] [6]

1.1 General Balance Equations

Let Q be a domain, I" the boundary of the domain and let u be an intrinsic quantity (for instance
mass or heat) and the volume density is described by a function S(u). The amount of the quantity in
the domain can vary within time by two reasons. Firstly, new quantity can accumulate by flow over
I" or secondly it can be generated due to the presence of sources or sinks within €. Consequently,

the balance reads
8t/S (x,1)) /((:vt)]n da+/th (1.1)

where J(z,t) is the flow over the boundary, n is normal vector pointing outside of €2, do is an
infinitesimal small surface element and Q(z,t) describes sources and sinks within €. Further math-
ematical manipulations leads to

/Q IS 1) gy /F (J (@, t)|n(z)) do — /Q Q(z,t)dz = 0, (1.2)

Applying the theorem of Gauss yields to

0S (u(z,t)) . B
/Qda:—i—/levJ(x,t)dx—/QQ(x,t)dx—O. (1.3)

ot
Finally,
/ {&S'(u(x,t)) +div J(z,t) — Q(:):,t)] dz = 0. (1.4)
Q ot
Since the domain is arbitrary it holds:
65(%(:’0) +div J(z,t) — Q(z,t) = 0. (1.5)

Depending on the constitutive law that describes the flow J, we obtain the balance equation of the
considered process. Important practical laws are

JV = _K gradu = —KVu (1.6)
which describes diffusive flow and
J® = cu (where ¢ is a velocity vector) (1.7)

which describes advective flow or a combination of (1.6) and (1.7)). For instance, substituting ([1.6])
in (1.5 leads to the following parabolic partial differential equation:

L) G (K (o 1) Tular 1] - Q) = 0 (18)
while the description of the flow by a combination of and yields to
(%wa(ta:,t)) -V [K(z,t)Vu(z,t) — cu(z,t)] — Q(z,t) = 0. (1.9)



1.2 Unsaturated Flow - The Richards Equation

todo

e explain
— porous medium,
— saturated / unsaturated
— wet and gas phase,

e mention all assumptions

Literature: [0, chapter 6|, [2, chapter 6]

_ 8¢)pr B krel B
0= ot \4 ( L (pr + ngez)> Qu (1‘10)

8 8 w 85 kI‘C K
; wS + o p S+dpug = V- <pw = (Vp+ pwgez)) — Qu (1.11)

Under the assumptions
e that the porosity is constant (i.e., the first term vanishes),
e and that the pressure of the gas phase is zero, that allows for p. = —p

the above equation takes the following form

Ipuw ap 9 Op. krak
—Qﬁ—— — Ppw—o— -V Vpw + puwgez) | —Q 1.12
where )
1 n
Do = ”%g [Seﬁm - 1] (1.13)
is the capillary pressure and
S-S
Seff = ﬁ (114)
max T
is the effective saturation.
1.2.1 Boundary Conditions
—g% =0 on Tp (Dirichlet type boundary conditions) (1.15)
k
pwﬂv pw-n+gh =0 on I'y (Neumann type boundary conditions) (1.16)
[

1.2.2 Evaluating Dominance of Effects

Substitution of variables from the first term of results in
Jpw Op p\ [ Opuw I\ (PN e _  Alpw)e I\ (PN o
Op 8t5 ¢C( ) (ap Sed” Oop ot 57 =9 (At). Sed” dp ot s
L Alpw)e Opw o\~ o
= .50 cqs(p)(at s

(1.17)

see 7.7 in
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a8 apc> » <8S 8pc>*

The second term of yields
S Op\" [0S dp.\
) ( ) =9 lpule (apc ot dpe Ot

0S5 Op, .. %
¢pwa at ¢ ¢pr (p'LU)c (8]7(: 8t 8]3@ 8t
B (AS)e . . [0S Opc\" B (AS)e . . [0S Op\™
= e (Pu)e (At), ope ot ) PPl 00w 5y
(1.18)

e (2 (e )
P fpw"‘ﬁwgez

v <pw k;ff (VPw +pwgez)> = \7 7 o
= (Fa v g (557 (35 + i)
(1.19)
0= 6205 (%) () 5 o). B, (5o e )
(pi"c)C( e (222 e ) g (s (G50 + o)) (1.20)
— o2 g (S0) (L) 50— (o B0, (S20) |
“jg”gc “?fe”; (o)t Lelpodeae) g (752 (G2 4 pige. ) )

1.2.3 Weak Formulation
Multiplying and (1.16) with test functions vy, v, € Hy(£2), integration over Q, 'y and adding

the results leads to
Opyw Op 0S8 Ope
= - p———35d w d
0 / vp @ Sdx — /va op 8 5 x

Op Ot

Kre

/ Up -V Py 1mprdx
Q Haw

k krelKJ T Dw

Vp - V- pyy—— pwgezdx — | vp- Qudx + Up w Vipw - -n+gy'|do.
Q FN /J”UJ
(1.21)
Partial integration of the third integral of (1.21]) leads to
dz  (1.22)

kre kre
1"‘vadg{;_/v- [v,,-pwu“‘va] dx—/VTvp "
w Q

Q Moy Q
The application of the theorem of Gauss to the first integral of the right hand side of - leads

to
k k
/ V- [vp . pwrempr] do = / (N rel"iva ndo
Hw r Hw
k k
_ / o P rel”\"vaw . nd0+/ Up P relK'Vpr .ndo (123)

=0, since vp,EHS ()



Substituting (1.23) in (1.22) and substituting the result in (1.21)) yields

B Opw Op 05 Op.
O—/ vp qﬁa atSda: /va ¢pwapc atd:v

kre kel
— / Up * Puw el Vpy -ndo + / VTvp - Puw ol Vppdz
I'n Q H

w w

k k
— / Vp * Vo pp—— relf® pwgezdx - / Up * Qudz + / Up |:,0w TelK’Vpr nt gﬁ;ﬂ do.
Q 12 Q I'n

w w

(1.24)
Since the v, and v, are arbitrary test functions it is possible to set v, = v},. This results in
Opw Op 05 Op.
0= —5d : ———d
/ ey a7 T /Q”p P g ot
krelks
/ \VARTHRPRRALLAR VSR (1.25)

k?r
—/vp-V'pw cl pwgezdx—/vp'dex—l—/ vp-gzlo\}“do.
Q Hw Q T'n

1.2.4 Finite Element Discretization
The pressure of the wet phase p,, is approximated by
Pw ™ Pw =Y _ Njp; = Np, (1.26)

using the shape functions N; and time dependent coefficients pj. Using the shape functions again
as test functions (Galerkin pr1n01ple) the discretization of (| - ) takes the following form

Opw Op / oS Op.
= | N -¢p—— N - dpy
0= / ¢ Op Ot Sd Q op Op. Ot dz

kre A~
/ VIN - p MIHVdi:): (1.27)

/N V- pw pwgezdx—/N Qudz + N - gk do.
I'n

This is a set of equations of the form

M yp+ Kppp+ ¥, =0 (1.28)
with
8pw Ip 0S dpe
My = [ N-o%e s~ [ N-op,g> e (1.20)
K, = / VIN - p rel””VNda; (1.30)
U, = /N V- Frel pwgezdx—/N Qudx + N - gkvdo. (1.31)
'y

1.3 Mass Diffusion Equation

The primary variable in the mass diffusion process is the concentration C. In the general balance
equation ((1.5)) the function S(u(z,t)) is substituted by ¢ RC, where ¢ is the porosity and R denotes
the retardation factor. The term J, describing the mass flow, is substituted by

qC — DgradC, (1.32)



i.e., there is advective and diffusive flow. The advective part gC is driven by the Darcy velocity ¢
of the coupled groundwater flow. Finally, the term

$RIC (1.33)

describing the decay of the chemical species is integrated into the equation which acts similarly to
a sink term. Here ¢ is the decay rate. The balance equation reads:

gt (pRC) 4+ div (¢C — D gradC) + ¢RIC — Q¢ =0 (1.34)

where

e D hydrodynamic dispersion tensor,
aq"
D = (¢Dq + Brlal) I + (BL — Br) Tl

where
— [ is the longitudinal dispersivity of chemical species
— [ is the transverse dispersivity of chemical species

— Dy is the molecular diffusion coefficient

e 1} is the decay rate
9¢

Incompressible solid, i.e. — = 0, and the retardation factor is not time dependent:

qu% +div (¢qC — DgradC) + ¢RIC — Qc =0 (1.35)
1.3.1 Boundary Conditions

C=4¢% on Tp (Dirichlet type boundary conditions) (1.36)
—(DgradCln) =¢5§ on T'y (Neumann type boundary conditions) (1.37)

1.3.2 Weak Formulation

The integration of the reformulated Neumann type boundary condition, i.e., (D grad C|n) + g% =0,
into (|1.35)), multiplying with arbitrary test functions v, v € H&(Q) and integration over €2 results in

a1
+/ﬂv.[ﬁ.¢.R.C]dQ—/ﬂv.chQ+/FNv-[(DgradCln>+g?v]dU

Oz/v-qb'R-aOdQ+/v-div(qCDgradC’)dQ
° @ (1.38)

Integration by parts of the second term in the above equation yields:

/ v-div (¢C — D gradC)dQ = —/ (gradv|qC — D gradC) dQ+/ div [v (¢C — D grad C)] dQ
Q Q Q
(1.39)



Using Green’s formula for the last term of the above expression

/ div [v (¢C — D grad C)]dQ) = j{ (v(gC — DgradC)|n)do
Q r

= / (v(gC — DgradC)|n)do + / (v(¢C — DgradC)|n)do
I'p 'y

and since v vanishes on I'p the integral over I'p also vanishes, this leads to

/ v-div (¢C — D grad C)dQ = —/ (gradv|qC — D gradC) dQ—i—/ (v(gC — D gradC)|n)do
Q Q r

N

(1.40)
Thus (1.38) reads:
0= / v-¢-R- %dﬁ - / (gradv|qC — D grad C) d2 +/ (v(¢C — D gradC)|n)do
Q ot Q T'y
+/ v.w.¢.R.C]dQ—/v.QCdQ+/ 5-[(DgradCln) + ¢§] do
Q Q I'n
(1.41)
Setting v =0 :
oC
0= / v-¢-R-—dQ — / (gradv|qC — D grad C) dQ2 +/ (vgC|n) do
(1.42)
+/v-[19-¢-R-C’]dQ—/U-QCdQ+/ v-g§do
Q Q I'n
1.3.3 Finite Element Discretization
The concentration is approximated by:
C=>» Nfc =N (1.43)

using the shape functions N, ]C and time dependent coefficients ¢;. Using the shape functions again
as test functions (Galerkin principle) the discretization of ((1.42))) takes the following form

Oc.
O:/QNZC-gb-R-NjaCt]dQ—/QVTNiC-q-Njccde%—/QVTNZCDVNfcde%—/F (NFq"NE¢j)ndo
N

_|_/QNZC.[0-¢-R-N]-ch]dQ—/QN,-C-QCdQ—I— NE - ¢§do

I'n
(1.44)
This is a set of equations of the form
CCer KCcet =0 (1.45)
with
K{¢=— / VINE - q- N{dQ+ / VINFDVN{dQ + / (N - ¢"NO) ndo
@ @ Ty (1.46)
+/NZ-C- [0-¢- R NF]dQ,
Q
FO=— / NEQedQ+ | NEg¢{do, (1.47)
Q Ty
cC _ C C



In (1.46]) the Darcy velocity ¢ is assumed to be known from the hydrological process. In contrast
to this approach pressure p in the Darcy velocity can be expressed as an approximation by shape
functions N?

K K
q=;gmd(p+g-g-2)%;(VNerQ-g-ez)- (1.49)

Thus, some terms of K gc are moved to the coupling matrix:

K’ =-— /Q VINE . g (VNP +0-g-e.) - NPdQ (1.50)

1.4 Evaluating Dominance of Effects

Substitute variables and coefficients that appear in (|1.35)):

B g (2CY (90 _ g (9O (AC)e _ o (OC (AC),
ol o () (59) =ovan () 80 - (1) ant

(1.51)
where t. = (At)e.
: 8qC  dq ., OC 94 \" (Ag)c s aC\" (AC). .
d = = = c c
v (qC) 81‘1 8IL‘zC+ aIL‘iq (3:@) qu) C7Ce+ 8:131 L&C) 74 (1 52)
_og C*(AQ)CC I L0C" q.(AC), .
) T Y

. 9 (00N _ (o 1 [ 90\ (AC),
div (D gradC) = Oz; <D3$i> B <(“)xz> F (D o <8$Z> LgC) ) (1.53)

) (D* ac*> Do(AC),

T omp \7 0x; ) 7
SRIC = ¢* $.R*R0*9.C*C. = 6" R9*C* ¢ RedCe (1.54)

Wwith L) = 1@ — 1,

.. (C (AC).  (Aq)e - Oq" . qo(AC). ,OC* Du(AC), & (.., dC*

. - D
=eR < ) bl e T T T T 2 o \P o
} $Re9.Cod™ R*I°C*

wn [ OC 1 (AqQ)e ., te Og* _, tc L0C* te 0 L0C*
9 _ple 9 (p
=¢R (m) T GeR <(AC) CeTooarC T o Perpan \P o (156)

VCete

a0y, PO
e [OC Det. ( (A . Ledg* . L. ,0C* 9 (. 0C*
0= <8t> T GR.L? ((AC)CCCDCax;C T9D. T Bar ax;<D ax;>> (157)
(AC) C¢*R*9*C

see 7.7 in
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With C, = (AC). and ¢. = (Aq),

0 R (ac> L Dite < Ledq' o Le 0C° 0 <D*ac ))

ot ) " ¢RI2Z\*D,oxr” "D 927 02t \7 0xr
+ et R*9*C*
oC\" D.t. L. 0q*C* 0 oCc*
O — * * - e — ———— — —— D* ote * * Q% *
¢R<8t> +¢CRCL§<qDC Ox? 8x2‘< 8x;>>+ﬁt¢Rﬁc
L
Setting Pe = qcﬁc, the Peclet number and Fo = ¢, tCL; the Fourier number
C C
aC\ " Fo 0 oC*
— * * e P . * * D* ﬂctc * *19* *
0 ¢R<8t) +¢CRcax;<eqC ( &C:))—i- o"R*U°C

(1.58)

(1.59)

(1.60)
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