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ABSTRACT

The development of a continuum phase-field model of brittle fracture for poroe-
lastic solids is presented. Three treatments for deriving the evolution equation of the
phase-field are compared. The phase-field approach transforms the discontinuous crack
interface into a continuous diffusive setting. The diffuseness is controlled by a length
scale parameter which is also associated with the stress state in the process zone. A one-
dimensional beam model with an analytical solution is provided for the verification of
the current numerical implementation.

INTRODUCTION

The phase-field approach is a promising numerical treatment for addressing
crack evolution. The principal highlight of this approach is to tackle the crack inter-
face from a continuous configurational perspective. The fracture surfaces are no longer
tracked and instead are represented by smooth phase transition boundaries that are in-
terposed between the fully damaged and undamaged zones. The diffusive crack topol-
ogy is characterised by a length scale parameter which also affects the stress state in
the process zone. In the context of Γ-convergence, such a continuous diffusive crack
converges to a discontinuous sharp crack with a Griffith-type surface energy.

The phase-field characterisation is proposed to patch the insufficient descrip-
tions for the crack evolution in the framework of classical theory of brittle fracture. In
this contribution, the specific motivation of exploring crack initiation and propagation
in porous media comes from the observation of critical tensile stresses within a water-
saturated material which is used in a novel thermal energy store, cf., Miao (2016),
Miao (2017). Measurements on the material samples indicate that the material has a
relatively low tensile strength and fails in a brittle manner.

Not only for this specific material, but also for other brittle storage materials, as
well as geotechnical and geological materials, these critical stresses can cause damage
and subsequently fracture which is associated with the partial loss of long-term me-
chanical stability of the structures they compose. Furthermore, the induced cracks can
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increase the permeability of the storage material and alter its water-retention proper-
ties. Driven by the purpose of providing a numerical implementation based on a gen-
eral theoretical concept for various research projects, however, the main objective is to
summarise a recent implementation into the open-source finite element platform Open-
GeoSys, as well as different theoretical access routes to the topic.

NUMERICAL TREATMENT

Basic equations

In the framework of isotropic linear elasticity, the undamaged elastic energy
density is

ψe (εel) =
1

2
λtr (εel)

2 + µεel : εel (1)

where λ and µ are the Lamé constants.
The approximation of the Helmholtz free energy functional of a fractured body

could have the formulation of

E (u, gradu, d) =

∫
Ω

[(
d2 + k

)
ψ+

e (εel) + ψ−e (εel)
]

dV

+ gc

∫
Ω

[
1

4ε
(1− d)2 + εgrad d · grad d

]
dV +

1

2τ

∫
CRl−1

d2dV
(2)

where d represents the crack field, see, Fig. 1b; k represents a residual stiffness. A pe-
nalized functional is introduced as one of several options to prevent usually unphysical
healing of the crack field with τ the penalty constant.
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Figure 1: Elastic body with: (a) sharp crack; (b) diffusive crack characterised by a
length scale parameter 2ε.

The external mechanical work functional is defined as

Wext (u) =

∫
∂Ωt

t̄ · udA+

∫
Ω

%b · udV (3)

where t̄ is the surface traction on ∂Ωt, b the specific body force.
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Thus, the global system assembles in the case of elastic deformation and brittle
fracture

Π = E (u, gradu, d)−Wext (u) , (4)

with equilibrium for a quasi-static process demanding

δΠ =
∂Π

∂u
· δu+

∂Π

∂d
δd = 0 (5)

Applying the Gauss theorem with respect to each term of the right-hand side of Eq. (5)
yields

∂Π

∂u
δu =−

∫
Ω

div
[(
d2 + k

)
σ+

0 + σ−0
]
δudV +

∫
∂Ωt

[(
d2 + k

)
σ+

0 + σ−0
]
n · δudA

−
∫
∂Ωt

t̄ · δudA−
∫

Ω

%b · δudV (6)

∂Π

∂d
δd =

∫
Ω

2dψ+
e (εel) δddV −

∫
Ω

1− d
2ε

gcδddV +

∫
∂Ω

2εgcgrad d · nδddA

−
∫

Ω

2εgcdiv (grad d) δddV +
1

τ

∫
CRl−1

dδddV (7)

thus leading to the following set of PDEs along with the respective Neumann-type
boundary conditions

div
[(
d2 + k

)
σ+

0 + σ−0
]

+ %b = 0 (8)

2dψ+
e (εel)−

1− d
2ε

gc − 2εgcdiv (grad d) +
d

τ
H (εtol − d) = 0 (9)[(

d2 + k
)
σ+

0 + σ−0
]
· n− t̄ = 0 on ∂Ωt (10)

grad d · n = 0 on ∂Ω (11)

THREE APPROACHES OF DERIVING THE PHASE-FIELD EQUATION FOR
NON-EQUILIBRIUM EVOLUTION

Thermodynamic formulation

Based on the first and second law of thermodynamics, in the framework of lin-
ear elasticity for small deformations, the Clausius-Planck inequality for an isothermal
process in a purely mechanical setting with ψ̄ (ε, d, grad d) is formulated as (cf., Ehlers
(2017))(

σ − %∂ψ̄
∂ε

)
: ε̇− %

[
∂ψ̄

∂d
− div

(
∂ψ̄

∂grad d

)]
ḋ− %div

(
∂ψ̄

∂grad d
ḋ

)
≥ 0 (12)

with a specific Helmholtz free energy ψ̄. To fulfill the inequality, the constitutive equa-
tion for stresses is found as

σ = %
∂ψ̄

∂ε
(13)
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and the boundary condition

∂ψ̄

∂grad d
· n = 0 on ∂Ω (14)

The evolution equation can be found with M > 0 as

ḋ = −%
[
∂ψ̄

∂d
− div

(
∂ψ̄

∂grad d

)]
M (15)

We here use a well-qualified approximating function proposed by Ambrosio
(1990) to define the Helmholtz free energy functional as

%ψ̄ =
(
d2 + k

)
ψ+

e (ε) + gc

[
1

4ε
(1− d)2 + εgrad d · grad d

]
+ ψ−e (ε) (16)

Substituting Eq. (16) into Eq. (15) obtains a specific formulation of the evolution equa-
tion

ḋ

M
= −2dψ+

e (ε) + gc

[
1

2ε
(1− d) + 2εdiv (grad d)

]
(17)

Geometrical treatment

A one-dimensional phase-field-type diffusive crack can be approached by an
intuitive geometrical treatment, cf., Miehe (2010), see Fig. 1. The sharp crack (Fig. 1a)
can be approximated by an exponential function

d(x) = 1− e
−|x|
2ε (18)

with the Dirichlet-type boundary conditions

d(0) = 0 and d(±∞) = 1 (19)

Eq. (18) defines a diffusive crack topology (Fig. 1b). ε → 0 implies that the diffusive
crack converges to a discontinuous sharp crack. In a mathematical sense, it can be
found that Eq. (18) is the solution of a second-order partial differential equation

4ε2d′′(x)− d(x) + 1 = 0 in Ω (20)

Eq. (20) is the Euler equation of an integral with the solution

d = Arg min
d∈Λ

[I(d)] (21)

with

I(d) = Γε(d) =

∫
Ω

γdV =

∫
Ω

[
1

4ε
(1− d)2 + εgrad d · grad d

]
dV (22)

where Λ = {d|d(0) = 0, d(±∞) = 1}. The evolution of crack process is characterised
by the extend of the regularised crack surface

Γ̇ε(d) =

∫
Ω

δγ

δd
ḋdV =

∫
Ω

− 1

2ε
[(1− d) + 2εdiv (gradd)] ḋdV ≥ 0 (23)
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Configurational forces

In the framework of isothermal phase transitions, the crack field d is treated as
an order parameter characterising the phases of the body. The evolution of the crack
field, i.e., the order parameter can be derived from the notion of configurational (ma-
terial) forces. Gurtin (2008) introduced an additional configurational balance equation
for the micro force system:

divξ + π + ω = 0 (24)
Note that, in this context, ξ represents a micro stress vector, π and ω are scalar in-
ternal and external micro forces, respectively. Postulating ψ̃ = ψ̃

(
ε, d, grad d, ḋ

)
the

Clausius-Planck inequality extended for micro-system contributions reads(
σ − ∂ψ̃

∂ε

)
: ε̇+

(
ξ − ∂ψ̃

∂grad d

)
· grad ḋ−

(
π +

∂ψ̃

∂d

)
ḋ− ∂ψ̃

∂ḋ
d̈ ≥ 0 (25)

In which, due to equipresence, π = π
(
ε, d, grad d, ḋ

)
. Then, the dissipation reads

π = − ḋ

M
− ∂ψ̃

∂d
(26)

Substituting Eq. (26) into Eq. (24) with ω := 0 yields

div
∂ψ̃

∂grad d
− ∂ψ̃

∂d
=

ḋ

M
(27)

Reformulating Eq. (27) based on Eq. (16) with respect to d, one obtains the Ginzburg-
Landau-like evolution equation

ḋ

M
= −2dψe (ε) + gc

[
1

2ε
(1− d) + 2εdiv (grad d)

]
(28)

Note that all approaches lead to identical thermodynamically consistent results
but highlight different conceptual perspectives.

NUMERICAL EXAMPLE

The numerical implementation into OpenGeoSys follows Gerasimov (2016)
and is verified against a one-dimensional quasi-static beam model with an analytical
solution stated in Kuhn (2013) to verify the phase-field implementation. A beam is
stretched by a prescribed displacement load applied to its two tips, see, Fig. 2.

Figure 2: One-dimensional beam model.

Due to the symmetry of the boundary conditions, Fig. 3 only plots the phase-
field parameter and displacement field distribution along a half beam. Comparisons of
the analytical solution and the numerical approximation show the satisfactory match
between these two solutions.
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Figure 3: Phase-field parameter and displacement field distribution along the beam.

PHASE-FIELD MODELLING IN MULTI-PHYSICAL PROCESSES

To study how temperature and fluid-pressure fields affect the formation of
cracks, and how the distribution of these field variables is affected by the presence
of cracks, multi-physical aspects are incorporated into the framework. The thermo-
hydraulic coupled phase-field approach is derived based on the Theory of Porous Me-
dia. Under the assumption of small deformations and brittle fracture, the Clausius-
Planck inequality for the overall aggregate formulates, cf., Ehlers (2017),(
σS + φSpI− %S

∂ψS

∂εS

)
: (εS)′S −

(
%SηS − p

φS

%SR0

∂%SR

∂T
+ %S

∂ψS

∂T

)
T ′S

+ (σF + φFpI) : dF − (p̂F − pgradφF) ·wF −
(
%FηF − p

φF

%FR0

∂%FR

∂T
+ %F

∂ψF

∂T

)
T ′F

− %S

[
∂ψS

∂dS

− div

(
∂ψS

∂grad dS

)]
(dS)′S − %Sdiv

(
∂ψS

∂grad dS

(dS)′S

)
≥ 0 (29)

where φS and φF represents the volume fraction for solid and fluid, respectively. (·)′S =
∂(·)/∂t + grad (·) · vS is the material time derivative of a quantity with respect to
the solid motion. The extra solid and fluid stresses and entropy and the extra fluid
momentum production are defined as

σE
S = σS + φSpI, σE

F = σF + φFpI (30)

ηE
S = ηS −

p

(%SR)2

∂%SR

∂T
, ηE

F = ηF −
p

(%FR)2

∂%FR

∂T
(31)

p̂E
F = p̂F − pgradφF (32)

To fulfill the inequality, the constitutive equation is found as

σE
S = %S

∂ψS

∂εS

(33)
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and the boundary condition

∂ψS

∂grad dS

· n = 0 (34)

the non-equilibrium conditions, cf., Ehlers (2017)

σE
F = 2 (1− dS)2 φFµFRdF (35)

p̂E
F = − (dS)2 (φF)2 µFRK

−1
S wF (36)

as well as the evolution equation

(dS)′S
M

= %S

[
∂ψS

∂dS

− div

(
∂ψS

∂grad dS

)]
(37)

where µFR is the effective dynamic viscosity of the pore fluid, KS the intrinsic perme-
ability. The Helmholtz free energy functions for solid and fluid phase are introduced
as

%S0ψS (εS, dS, grad dS, T ) =
[
(dS)2 + k

]
(ψSe)

+ (εS) + (ψSe)
− (εS)

− 3αTSKS (T − TS0) εS : I + gSc

[
1

4ε
(1− dS)2 + εgrad dS · grad dS

]
− %S0c

E
S

(
T ln

T

TS0

− T + TS0

)
− %S0ηS0 (T − TS0)

(38)

%F0ψF (T ) = −%F0c
E
F

(
T ln

T

TF0

− T + TF0

)
− %F0ηF0 (T − TF0) (39)

The governing partial differential equations read (cf., Ehlers (2017))
Mixture volume balance:

div (vS + φFwF)− (φS3αTS + φFβTF) (T )′S − φFβTFgradT ·wF = 0 (40)

Momentum balance for solid phase:

%S (vS)′S = divσE
S − φSgrad p+ %Sg − p̂E

F (41)

Momentum balance for fluid phase:

%F (vF)′F = divσE
F − φFgrad p+ %Fg − p̂E

F (42)

Mixture energy balance:

(%cp)eff

∂T

∂t
+ φF%FRcpFgradT ·wF − div (λeffgradT ) = 0 (43)

Evolution equation for phase-field:

(dS)′S
M

= 2dS (ψSe)
+ (εS) + gSc

[
1

2ε
(1− dS) + 2εdiv (grad dS)

]
(44)
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CONCLUSION

In this contribution, a continuum phase-field model of brittle fracture was presented.
To offer physical insight to the interested reader, three treatments for obtaining the evo-
lution equation of the phase-field were summarised. The direct incentive of developing
a phase-field model is to allow the assessment for the crack formation and evolution
in porous storage material under multi-physical conditions. The model implementation
was outlined and the pure mechanical case was verified through comparing with an
analytical solution.
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