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1 Model Formulation

1.1 Balance Equations

This is a general motivation to parabolic partial di�erential equations which is very similar to [?]
and is here repeated for a complete representation.
Let Ω be a stationary domain, Γ the boundary of Ω. Let u be an extensive quantity (for instance

mass or heat). The corresponding intensive quantity (e.g. density) of u may be described by a
function S(u). The amount of the quantity in the domain can vary within time by two reasons.
Firstly, new quantity can accumulate by �ow over Γ or secondly it can be generated due to the
presence of sources or sinks within Ω. Consequently, the balance reads

(1.1)
∂

∂t

∫
Ω
S(u(x, t))dx = −

∫
Γ
〈J(S(u(x, t)))|n(x)〉dσ +

∫
Ω
Q(x, t)dx,

where J(x, t) is the total �ux over the boundary, n is normal vector pointing outside of Ω, dσ is
an in�nitesimal small surface element and Q(x, t) describes sources and sinks within Ω. Further
mathematical manipulations leads to

(1.2)

∫
Ω

∂S(u(x, t))

∂t
dx+

∫
Γ
〈J(S(u(x, t)))|n(x)〉dσ −

∫
Ω
Q(x, t)dx = 0.

Applying the theorem of Gauss yields to

(1.3)

∫
Ω

∂S(u(x, t))

∂t
dx+

∫
Ω

div J(S(u(x, t)))dx−
∫

Ω
Q(x, t)dx = 0.

Finally, since the integral operator is linear, it holds

(1.4)

∫
Ω

[
∂S(u(x, t))

∂t
+ div J(S(u(x, t)))−Q(x, t)

]
dx = 0.

Since the domain is arbitrary it holds:

(1.5)
∂S(u(x, t))

∂t
+ div J(S(u(x, t)))−Q(x, t) = 0.

2



1.1.1 Mass Balance Equations

Hydrodynamics and mechanics within porous media are described on a semimacroscopic level, in
order to include the highly heterogenous microscopic material properties as volume averages.
Let V [m3] be a representative elementary volume (REV). The quotient of mass m[kg] and V de�nes
the apparent density ρ = m

V . Vvoid = φV represents the pore or void volume of the porous medium.
The real density ρR = m

Vvoid
is related to the apparent density by the porosity.

For the problem at hand we consider a two component �uid consisting of a solvent of total mass
ms and a solved component of mass mC . Here the subscripts s and C denote solvent and solved
component, respectively. In general all quantities do depend on space and time. For convenience,
this dependency is not indicated explicitly in the following. The intensive functions S(ms) and

S(mC) as well as the total mass density
[
kg
m3

]
S(mt), with corresponding mass fractions ωi = ρi/ρR

and the identity
∑

i ωi = 1, read

S(ms) = φρRωs(1.6)

S(mC) = φρRωC(1.7)

S(mt) = φρR.(1.8)

Here ρi denotes the density of component i and ρR denotes the total mass density. Using Equation
(1.5) the conservation law for the component i can be written as

(1.9)
∂ (φρRωi)

∂t
+ div (J (φρRωi)) +Qi = 0.

Making use of the average bulk velocity v within an REV we can decompose the �ux of component i
in advective �ux and dispersive �ux, which captures all deviations induced by dispersion or di�usion

(1.10) J (φρRωi) = φρRωiv + Jdis
i .

By de�nition the following identity holds

(1.11)
∑
i

Jdis
i = 0.

The sum of all component mass balances leads to the balance equation of total mass density

(1.12)
∂ (φρR)

∂t
+ div (φρRv) +Qp = 0.

Inserting Equation (1.12) the component wise mass balance equation (1.9) can be rewritten in its
advective form into

(1.13) φρR
∂ (ωi)

∂t
+ φρR

〈
v

∣∣∣∣∇ωi〉+∇Jdis
i +Qi − ωiQp = 0.
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1.1.2 Momentum Balance Equation

The momentum density S(M) = φρRv needs to be conserved according to Equation (1.5). We
de�ne the momentum density �ux as

(1.14) J(S(M)) = φ%Rvv − σ,

where σ is a viscous stress density tensor in units of kg
ms2

. Using F as an interfacial drag term
of momentum exchange and g as gravitational acceleration the macroscopic momentum balance
equation reads

(1.15)
∂φ%Rv

∂t
+ div

(
φ%Rv

2
)
− div (σ) = φ (%Rg + F ) .
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1.2 Simpli�cations

1.2.1 Phenomenological Laws

For the nonadvective (dispersive) �uxes of mass Jdis
i and momentum σ phenomenological laws are

available. Dispersive mass �ux is expressed as an Fickian type law

(1.16) Jdis
i = −ρRDh∇ωi

with Dh

[
m2

s

]
denoting the hydrodynamic dispersion tensor, which is assumed to be independent

of the concentration and its gradient. According to the Bear-Scheidegger dispersion relationship for
isotropic porous media it reads

(1.17) Dh = φ

(
DD + βT ‖v‖I + (βL − βT )

vvT

‖v‖

)
with molecular di�usion coe�cient DD, longitudinal βL and transversal βT dispersivity coe�cients
and the identity tensor I.
The stress tensor for the �uid phase can be expressed assuming the validity of Newton's viscosity

law , with hydrostatic pressure p and σl denoting the deviatoric stress tensor depending on the

dynamic viscosity µ
[
kg
ms

]
and the velocity gradient ∇v,

(1.18) σ = −φ
(
pI + σl(µ,∇v)

)
.

1.2.2 Density Di�erential

The density function ρR(p, ωC) is regarded as a function of pressure and component concentration.
Hence, its total di�erential reads

(1.19) dρR =
∂ρR
∂p

dp+
∂ρR
∂ωC

dωC .

From the relation above the density function can be obtained immediately by integration.

1.2.3 Constitutive Equations

The interfacial drag term F of momentum exchange can be developed up to the 2nd order in q with
q being the �ltration or Darcy velocity q = φv, with κ [m2] being a pemeability tensor and the
Forchheimer coe�cient IF ,

(1.20) F = −µ
κ
q − µ

κ
IF ‖q‖q.

Additionally the dynamic viscosity can be regarded as a function of concentration µ = µ(ωC).

1.2.4 Incompressible Porous Medium

The porous medium is considered not to vary in space and time. Thus, all derivatives of φ vanish.
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1.2.5 Component Mass Balance Assumptions

A scenario might be considered, where a certain fraction of component mass is stored within the
solid matrix, incapable of moving with the �uid. If there is an equilibrium reaction between the
amount of bound component mass with the amount of solved mass within an REV, their proportion
is constant

ωsolid
C ρS

ω�uid
C ρR

= Kdφ = const,(1.21)

with proportionality factor Kd. Hence, by de�nition the amount of component bound to the solid
matrix can only change by components getting solved within the �uid or vice versa. Thus, the total
component mass change is reads

(1.22)
∂
(
ωsolid
C ρS + φρRω

�uid
C

)
∂t

=
∂
(
(KdφρR + φρR)ω�uid

C

)
∂t

.

Since both, the solid matrix and the void space are assumed to be constant the expression can be
further simpli�ed as

(1.23)
∂ (KdφρR + φρR)ω�uid

C

∂t
= (Kd + 1)

∂φρRωC
∂t

.

For convenience ω�uid
C = ωC is set and a retardation factor R = 1 + Kd is introduced. In the

following, there is no energetic cost for the transition of components from bound state to solved
state taken into account.
Often, a process might be of interest, where the component concentration decays in time. This
could be a consequence for radioactive decay. Hence, we add this decay term permanently to the
equations. The widely used description of decay processes include such as sink terms RC and read

(1.24) RC = RθφρRωC

with θ
[

1
s

]
denoting a decay rate. Note, both the bound and solved parts of the component mass

are exposed to the decay process here.

1.2.6 Momentum Balance Assumptions

Within ground water �ow models, innertia is generally neglected. Additionally, forces are only
regarded in linear order of q and no derivates of q are considered. Taking those simpli�cations into
account, the momentum balance Equation (1.15) simpli�es to

(1.25) div (pI) =
(
%Rg −

µ

κ
q
)

which can be used to calculate the �ltration velocity

(1.26) q = −κ
µ

(∇p− ρRg) .

1.3 Complete Equations

Here, all assumptions made in the previous chapter are taken into account.
Using Equation (1.26) to rewrite (1.12) the total mass balance reads

(1.27) φ
∂ρR
∂t
− div

(
κ

µ
ρR (∇p− ρRg)

)
+Qp = 0
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and can be rewritten using (1.19)

(1.28) φ
∂ρR
∂p︸ ︷︷ ︸
αp

∂p

∂t
+ φ

∂ρR
∂ωC︸ ︷︷ ︸
βp

∂ωC
∂t
− div

(
κ

µ
ρR (∇p− ρRg)

)
︸ ︷︷ ︸

γp

+ Qp︸︷︷︸
δp

= 0.

Inserting (1.26) and (1.16) into the advective form for component mass balance Equation (1.13)
for the solved component mass and adding the decay term (1.24) as well as the retardation factor
introduced above leads to

φρRR︸ ︷︷ ︸
βωC

∂ωC
∂t
− div (ρRDh∇ωC)︸ ︷︷ ︸

γωC

+QωC − ρR
〈
κ

µ
(∇p− ρRg)

∣∣∣∣∇ωC〉−RωCQp +RθφρRωC︸ ︷︷ ︸
δωC

= 0.

(1.29)

The abbreviations αi, βi, γi, δi are introduced to simplify calculations. The system can be solved by
the parallel solution of Equation (1.28) and Equation (1.29).

1.3.1 Boundary Conditions

Dirichlet and Neumann conditions are de�ned at the boundary Γ of Ω. The corresponding areas,
where the boundary conditions are de�ned are denoted with ΓD and ΓN , resprectively, with Γ =
ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.

Pressure Boundary Conditions

For the pressure Boundary conditions we can note, that �ow boundary conditions are equivalent in
it's form to Neumann type boundary conditions, hence the boundary conditions can be de�ned as

p− gpD = 0 on ΓD (Dirichlet type boundary condition),(1.30) 〈
κ

µ
ρR (∇p− ρRg)︸ ︷︷ ︸

γNp

∣∣∣∣n
〉

+ gpN = 0 on ΓN (Neumann type boundary condition).(1.31)

1.3.2 Concentration Boundary Conditions

For component concentration boundary conditions are implemented as

ωC − gωC
D = 0 on ΓD (Dirichlet type boundary condition),(1.32) 〈

ρRDh∇ωC︸ ︷︷ ︸
γNωC

∣∣∣∣n
〉

+ gωC
N = 0 on ΓN (Neumann type boundary condition).(1.33)
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2 Weak Formulation and FEM Discretization

2.1 General Derivation of Weak Formulation

Adding the Neumann type boundary conditions to the whole domain boundarys and adding the
expression to Equation (1.29) or Equation (1.28) leads to a partial di�erential equation of the form

(2.1) α
∂p

∂t
+ β

∂ωC
∂t
− div γ + δ = 0.

Since Equation (2.1) holds for arbitrary points of the domain, the equations stays valid if it is
multiplied by a test function Ψ ∈ H1

0 (Ω) which is choosen, such that it vanishes on the Dirichlet
boundary of Ω

(2.2) 0 =

∫
Ω

Ψ

(
α
∂p

∂t
+ β

∂ωC
∂t
− div γ + δ

)
dx

or equivalently

0 =

∫
Ω

Ψα
∂p

∂t
dx+

∫
Ω

Ψβ
∂ωC
∂t

dx−
∫

Ω
Ψ div γ dx+

∫
Ω

Ψδ dx.(2.3)

Applying partial integration and using Gauss theorem on the third part of Equation (2.3) leads to

−
∫

Ω
Ψ div γ dx =

∫
Ω
〈gradΨ|γ〉 dx−

∫
ΓN

〈Ψγ|n〉dσ −
∫

ΓD

〈Ψγ|n〉 dσ.(2.4)

The integral over the Dirichlet boundaries ΓD vanishes, since we choose Ψ accordingly. Inserting
the remaining parts of Equation (2.4) into Equation (2.3) yields

0 =

∫
Ω

Ψα
∂p

∂t
dx+

∫
Ω

Ψβ
∂ωC
∂t

dx+

∫
Ω
〈gradΨ|γ〉 dx−

∫
ΓN

〈Ψγ|n〉dσ +

∫
Ω

Ψδ dx.(2.5)

To this, we can add a Neumann boundary condition integrated at the domain boundary and use
the linearity of scalar products. Using the notation from the previous section, the weak form of an
Equation in the form of Equation (2.1) reads

0 =

∫
Ω

Ψα
∂p

∂t
dx+

∫
Ω

Ψβ
∂ωC
∂t

dx+

∫
Ω
〈gradΨ|γ〉 dx+

∫
Ω

Ψδ dx

+

∫
ΓN

〈
Ψ
(
γN − γ

)
|n
〉

dσ +

∫
ΓN

ΨgNdσ.
(2.6)
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2.2 Total Mass Flow

2.2.1 Weak Formulation

For the bulk �ow, we can replace the coe�cients in Equation (2.6) with

φ
∂ρR
∂p︸ ︷︷ ︸

α=αp

∂p

∂t
+ φ

∂ρR
∂ωC︸ ︷︷ ︸
β=βp

∂ωC
∂t
− div

(
κ

µ
ρR (∇p− ρRg)

)
︸ ︷︷ ︸

γ=γp

+ Qp︸︷︷︸
δ=δp

= 0,

and γNp − γp = 0.
Hence the weak form of Equation (1.28) reads

0 =

∫
Ω

Ψpφ
∂ρR
∂p

∂p

∂t
dx+

∫
Ω

Ψpφ
∂ρR
∂ωC

∂ωC
∂t

dx+

∫
Ω

〈
gradΨp

∣∣∣∣κµρR (∇p− ρRg)

〉
dx

+

∫
Ω

ΨpQpdx+

∫
ΓN

ΨpgpNdσ.

(2.7)

2.2.2 Finite Element Discretization

The solutions for p and ωC will be approximated by shape functions

(2.8) p ≈
∑

Np
j p̂j = Npp̂, ωC ≈

∑
Nω
j ω̂j = Nωω̂

where Np
j (x, y, z) and Nω

j (x, y, z) are the shape functions and p̂(t), ω̂(t) are coe�cients. The case
where the test functions are approximated by the same shape function, i.e.

(2.9) Ψp =
∑
i

Np
i , Ψω =

∑
i

Nω
i ,

is denoted as Galerkin principle. With this, the whole system is a set of equations of the form

(2.10) M ȧ+Ka+ b = 0

with

(2.11) M =

[
MωCωC MωCp

MpωC Mpp

]
, a =

[
ω̂
p̂

]
, K =

[
KωCωC KωCp

KpωC Kpp

]
, and f =

[
bωC

bp

]
.

Substituting (2.8) and (2.9) in (2.7) leads to

0 =

[∫
Ω
Np
i φ
∂ρR
∂p

Np
j dx

]
∂p̂j
∂t

+

[∫
Ω
Np
i φ

∂ρR
∂ωC

NωC
j dx

]
∂ω̂j
∂t

+

[∫
Ω
∇TNp

i ρR
κ

µ
∇Np

j dx

]
p̂j

−
∫

Ω
∇TNp

i ρR
κ ρR g

µ
ezdx+

∫
Ω
Np
i Qpdx+

∫
ΓN

Np
i g

p
Ndσ,

= Mpp
ij

∂p̂j
∂t

+MpωC
ij

∂ω̂j
∂t

+Kpp
ij p̂j + bpi

(2.12)

with components i, j = 1, . . . , n, and coe�cients

Mpp
ij =

∫
Ω
Np
i φ
∂ρR
∂p

Np
j dx

MpωC
ij =

∫
Ω
Np
i φ

∂ρR
∂ωC

NωC
j dx

Kpp
ij =

∫
Ω
∇TNp

i ρR
κ

µ
∇Np

j dx

bpi =

∫
Ω
Np
i Qpdx+

∫
ΓN

Np
i gNdσ −

∫
Ω
∇TNp

i ρR
κ ρR g

µ
ezdx.

(2.13)
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2.3 Component Flow - Advective Form

2.3.1 Weak Formulation

For the component �ow, we can replace the coe�cients in Equation (2.6) with

φρRR︸ ︷︷ ︸
β=βωC

∂ωC
∂t
− div (ρRDh∇ωC)︸ ︷︷ ︸

γ=γωC

+QωC − ρR
〈
κ

µ
(∇p− ρRg)

∣∣∣∣∇ωC〉−RωCQp +RθφρRωC︸ ︷︷ ︸
δ=δωC

= 0.

and γNωC
− γωC = 0. Hence the weak solution of Equation (1.28) reads

0 =

∫
Ω

ΨωCRφρR
∂ωC
∂t

dx

+

∫
Ω

〈
gradΨωC

∣∣∣∣ (ρRDh∇ωC)

〉
dx

+

∫
Ω

ΨωC (QωC +RθφρRωC −RωcQp) dx

−
∫

Ω
ΨωCρR

〈
κ

µ
(∇p− ρRg)

∣∣∣∣∇ωC〉 dx

+

∫
ΓN

ΨωCgωC
N dσ

.

(2.14)

2.3.2 Finite Element Discretization

Using the shape functions de�ned in Section 2.2.2 the �nite element discretization of equation (2.21)
reads

0 =

[∫
Ω
Nω
i RφρRN

ω
j dx

]
∂ω̂j
∂t

+

[∫
Ω

〈
∇TNω

i

∣∣∣∣ρRDh∇Nω
j

〉
dx

]
ω̂j

+

∫
Ω
Nω
i QωCdx+

[∫
Ω
Nω
i RθφρRN

ω
j dx

]
ω̂j −

[∫
Ω
Nω
i RQpN

ω
j dx

]
ω̂j

+

∫
Ω
Nω
i ρR

〈
q

∣∣∣∣∇ωC〉 dx+

∫
ΓN

Nω
i g

ωC
N dσ

=MωCp
ij

∂p̂j
∂t

+MωCωC
ij

∂ω̂j
∂t

+KωCωC
ij ω̂j + bωi

(2.15)

where we used the abbreviation

(2.16) q(t) = −κ
µ

(∇p− ρRg) .
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The coe�cients for the shape matrices read

MωCωC
ij =

∫
Ω
Nω
i RφρRN

ω
j dx(2.17)

KωCωC
ij =

∫
Ω

〈
∇TNω

i

∣∣∣∣ρRDh∇Nω
j

〉
dx+

∫
Ω
Nω
i RθφρRN

ω
j dx(2.18)

−
∫

Ω
Nω
i RQpN

ω
j dx(2.19)

bωC
i =

∫
Ω
Nω
i QωC dx+

∫
ΓN

Nω
i g

ωC
N dσ +

∫
Ω
Nω
i ρR

〈
q

∣∣∣∣∇ωc〉 dx.(2.20)

2.4 Component Flow - Non Advective Form

2.4.1 Weak Formulation

For the component �ow, we can replace the coe�cients in Equation (2.6) with

ωCRφ
∂ρR
∂p︸ ︷︷ ︸

α=αωC

∂p

∂t
+ ωCRφ

(
ρR
ωC

+
∂ρR
∂ωC

)
︸ ︷︷ ︸

β=βωC

∂ωC
∂t
− div

(
κ

µ
ρRωC (∇p− ρRg) + ρRDh∇ωC

)
︸ ︷︷ ︸

γ=γωC

+QωC +RθφρRωC︸ ︷︷ ︸
δ=δωC

= 0,

and γNωC
− γωC = 0. Hence the weak solution of Equation (1.28) reads

0 =

∫
Ω

ΨωC

(
ωCRφ

∂ρR
∂p

)
∂p

∂t
dx

+

∫
Ω

ΨωC

(
ωCRφ

(
ρR
ωC

+
∂ρR
∂ωC

))
∂ωC
∂t

dx

+

∫
Ω

〈
gradΨωC

∣∣∣∣ (κµρRωC (∇p− ρRg) + ρRDh∇ωC
)〉

dx

+

∫
Ω

ΨωC (QωC +RθφρRωC) dx

+

∫
ΓN

ΨωCgωC
N dσ.

(2.21)
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2.4.2 Finite Element Discretization

Using the shape functions de�ned in Section 2.2.2 the �nite element discretization of equation (2.21)
reads

0 =

[∫
Ω
Nω
i

(
ωCRφ

∂ρR
∂p

)
Np
j dx

]
∂p̂j
∂t

+

[∫
Ω
Nω
i

(
Rφ

(
ρR + ωC

∂ρR
∂ωC

))
Nω
j dx

]
∂ω̂j
∂t

+

[∫
Ω

〈
∇TNω

i

∣∣∣∣ (−qρRNω
j + ρRDh∇Nω

j

)〉
dx

]
ω̂j

+

∫
Ω
Nω
i QωCdx+

[∫
Ω
Nω
i RθφρRN

ω
j dx

]
ω̂j

+

∫
ΓN

Nω
i g

ωC
N dσ

=MωCp
ij

∂p̂j
∂t

+MωCωC
ij

∂ω̂j
∂t

+Kpp
ij p̂j + bωi

(2.22)

where we used the abbreviation

(2.23) q(t) = −κ
µ

(∇p− ρRg) .

The coe�cients for the shape matrices read

MωCp
ij =

∫
Ω
Nω
i

(
ωCRφ

∂ρR
∂p

)
Np
j dx(2.24)

MωCωC
ij =

∫
Ω
Nω
i

(
Rφ

(
ρR + ωC

∂ρR
∂ωC

))
Nω
j dx(2.25)

KωCωC
ij =

∫
Ω

〈
∇TNω

i

∣∣∣∣ (−qρRNω
j + ρRDh∇Nω

j

)〉
dx(2.26)

+

∫
Ω
Nω
i RθφρRN

ω
j dx(2.27)

bωC
i =

∫
Ω
Nω
i QωC dx+

∫
ΓN

Nω
i g

ωC
N dσ.(2.28)
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