Stationary creep with the BGRa model:
Implementation in OpenGeoSys

Thomas Nagel, Wenqing Wang

July 20, 2018

Contents
1 Preliminary definitions

2 Implementation
2.1 Rate form . . .. o e
2.2 Absoluteform. . . ... .
2.3 Remarksonthe TMcoupling. ... ....... ... i



1 Preliminary definitions

Effective stress:

3
Teff = \EHUDII =3 1)

The BGRa Model is given by
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2 Implementation

The implementation is performed within a fully implicit scheme using nested Newton-Raphson algorithm
as the standard material model interface in OGS-6. For details on the general scheme, see:

¢ Thomas Nagel, Wolfgang Minkley, et al. (Apr. 2017). “Implicit numerical integration and consistent
linearization of inelastic constitutive models of rock salt”. In: Computers & Structures 182, pp. 87—
103. 1SSN: 00457949

* Thomas Nagel, Norbert Bottcher, etal. (2017). Computational Geotechnics. SpringerBriefs in Energy
January. Cham: Springer International Publishing, pp. 1-12. 1SBN: 978-3-319-56960-4

and references therein.

2.1 Rate form

The above equations can be condensed into a single rate equation for the stress:
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With a backward Euler implementation the residual for the local stress integration algorithm reads:
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such that o**4? can be determined iteratively. The local Jacobian only requires the derivative
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After convergence, the consistent tangent operator can then be extracted with the help of
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which in the present case can be written directly as
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2.2 Absolute form

The often more accurate absolute form would read (with the initial stress o and initial temperature Tp):
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With a backward Euler implementation the residual for the local stress integration algorithm reads:
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This formulation shows very directly the straight-forward extension to BGRb.
The local Jacobian has the four entries
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After convergence, the consistent tangent operator can then be extracted with the help of
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2.3 Remarks on the TM coupling

The consistent tangent is required as per the linearisation of the term
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along the displacement increment:

do
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Linearisation into the direction of the temperature increment yields the coupling matrix:
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For the BGRa model, we find
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